Guass’s theorem for gravitation:
Guass's law states that the total gravitational flux over a closed surface, having a unique outward drawn normal to it at every point is - 4πG times the total mass enclosed by that surface.
                The gravitational field E at a distance ‘r' from a point mass M is given by :
                 E= - GM/r²    .....(1)
                 Then the flux (ϕ) of the gravitational field, through the surface of the sphere of radius ‘r' is given by :
                  ϕ = - GM × 4πr² = - 4πGM
                            r²   
                  As shown in  figure, this flux  ϕ  is  due  to  the  normal component of gravitational field 
                 E = - GM cosϴ
                           r²
                  Let , dϕ = small flux through an  element  of  area  dA.
               .•.dϕ = -GM cosϴ dA  
                              r²
               .•. dϕ= E.dA = n. E dA
               .•. Total gravitational flux enclosed by the closed surface is :
           ϕ = ∫ E. dA = ∫ n^. E dA
       .•. ϕ =  ∫ E1.dA +  ∫ E2.dA + ........
       .•. ϕ = -4πG (M1 + M2 + ......)
       .•. ϕ = -4πGM 
       where , M = sum of all masses enclosed by the surface.
This is Gauss's law in gravitation.

No comments:
Post a Comment